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Motivation
System MTBF decreases with increasing
number of cores and supporting
components

Θsys =
Θnode

n
=

5 yrs
100000

≈ 26 mins

Time to perform a checkpoint increases
with application size
I/O bandwidth to non-volatile storage limits
checkpoint frequency
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Checkpoint/Restart Mechanisms
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Research Goals
Key Question
Will a hardware-assist provide significant
improvement over current approaches?

By improvement, we mean...

Higher performance

Better SATA bandwidth
Lower overhead (compared to software)

Ultimately, are checkpoints/restarts faster?

Very modest resources
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Checkpoint/Restart Prototype

Implemented prototype C/R core
Implemented SATA2 disk controller core
Integrated both on a FPGA that has access
to node’s memory
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C/R Block Diagram
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MGT       :  Multi Gigabit Transceiver
MPMC     :  Multi-port Memory Controller
NPI         :  Native Port Interface
MBLAZE :  Microblaze Embedded CPU
SSD        :  Solid State Drive

data

control
PLB

Note: MBLAZE is a processor used to control experiments; it would not be part of the proposed approach.
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Performance and Size

To evaluate the proposed solution

Investigated bandwidth of various checkpoint sizes

Measured checkpoint speeds versus raw SSD I/O

Measured software overhead on conventional Linux
node for reference

Compare C/R core resources relative to a processor
core
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Bandwidth

Xilinx ML605
(V6 LX240T)

OCZ Agility 2
SSD

C/R and SATA
instrumented to
gather perf. data
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Overhead of C/R Core

File Size Checkpoint Restart SATA Write SATA Read
Bytes time (µs) time (µs) time (µs) time (µs)
4096 24.48 102.76 24.35 102.67
8192 38.4 109.69 38.24 109.61
16384 68.01 140.18 67.9 140.12
32768 127.59 199.45 127.44 199.37
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Software Overhead

SSD connected to an 2.1 GHz AMD Opteron
Machine with 16 GB RAM

Fio, a Linux benchmarking tool was used for raw
read/writes

32 MB Seq Read 32 MB Seq Write
time (ms) time (ms)

CPU 155.07 331.25
FPGA 119.99 120.92

Overhead: 30% for Reads and 173% for Writes
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Software Effect on Bandwidth

Seq Read BW Seq Write BW
(MB/s) MB/s)

CPU 206.35 96.6
FPGA 279.72 277.47

Bandwidth Lost:
26% for Reads
65% for Writes
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Resources Required

V6 is 40 nm device with ≈ 2 billion transistors

units: 150,720 LUTs, 301,440 Flip/Flops, 416 BRAMs, 20
transceivers

Resources CR SATA CR+SATA % Device
LUTs 1,280 1,531 2,811 1.8%
F/Fs 1,030 1,121 2,151 0.7%

BRAMs 4 3 7 1.6%
MGT 0 1 1 5%
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Conclusion

The propose C/R solution is...
very small (fraction of a processor core),
bandwidth efficient (approaches i/f speed),
much faster than software.

These results suggest that the HPC community
could benefit (if node-level storage was
available).
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Future Work

Presently, no filesystem (just sequential
files)
Might it be valuable to integrate with
async/incremental system?
How to implement....

Dark silicon on COTS, enabled for HPC
machines?
Integrated SoC (ARM, BG node)?
As a peripheral card (maybe no SATA i/f?)
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Thank You
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Interface to Memory Controller and
SATA HBA
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